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Measuring Global Spatial Autocorrelation with Data Reliability
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Yongwan Chun
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Assessing spatial autocorrelation (SA) of statistical estimates such as means is a common practice in spatial analysis and sta-
tistics. Popular SA statistics implicitly assume that the reliability of the estimates is irrelevant. Users of these SA statistics
also ignore the reliability of the estimates. Using empirical and simulated data, we demonstrate that current SA statistics
tend to overestimate SA when errors of the estimates are not considered. We argue that when assessing SA of estimates
with error, one is essentially comparing distributions in terms of their means and standard errors. Using the concept of
the Bhattacharyya coefficient, we proposed the spatial Bhattacharyya coefficient (SBC) and suggested that it should be
used to evaluate the SA of estimates together with their errors. A permutation test is proposed to evaluate its significance.
We concluded that the SBC more accurately and robustly reflects the magnitude of SA than traditional SA measures by
incorporating errors of estimates in the evaluation. Key Words: American Community Survey, Geary ratio, Moran’s I,
permutation test, spatial Bhattacharyya coefficient.

评估诸如平均的统计估计之空间自相关（SA)，是空间分析与统计中的惯例。盛行的SA统计暗自假设估计的信度是不相关
的。这些SA统计的使用者，亦忽略估计的信度。我们运用经验与模拟数据，证明目前的SA统计在尚未考量估计误差时，
倾向过度估计SA。我们主张，当评估有误差的SA估计时，本质上便是比较其平均与标准误差的分佈。我们运用巴氏系数
的概念，提出空间巴氏系数（SBC)，并主张该系数应该用来对估计的SA及其误差一并进行评估。我们提出排列检定来评
估其显着性。我们于结论中主张，通过纳入评估中的估计误差，SBC较传统的SA测量方法而言，更精确且强健地反映出
SA的程度。关键词：美国社区调查，吉尔里比例，莫兰指数，排列检定，空间巴氏系数。

Evaluar la autocorrelaci�on espacial [SA, spatial autocorrelation] de c�alculos estad�ısticos como las medias es una pr�actica
com�un en el an�alisis espacial y la estad�ıstica. Las populares estad�ısticas de SA asumen impl�ıcitamente que la confiabilidad
de los c�alculos es irrelevante. Los usuarios de estas estad�ısticas de SA tambi�en ignoran la confiabilidad de los c�alculos.
Usando datos emp�ıricos y simulados, demostramos que las estad�ısticas de SA tienden a sobreestimar la SA cuando los
errores de los c�alculos no son considerados. Nosotros sostenemos que cuando se eval�ua la SA de c�alculos con error, uno
est�a esencialmente comparando las distribuciones en t�erminos de sus medias y errores est�andar. Mediante el uso del con-
cepto del coeficiente de Bhattacharyya, propusimos el coeficiente espacial de Bhattacharyya (SBC) y sugerimos que deb�ıa
usarse para evaluar la SA de los c�alculos junto con sus errores. Se propone un test de transformaci�on para evaluar su signif-
icancia. Concluimos que el SBC refleja de manera m�as exacta y robusta la magnitud de la SA que las tradicionales medidas
de SA incorporando los errores de c�alculo en la evaluaci�on. Palabras clave: coeficiente espacial de Bhattacharyya,
Estudio de la Comunidad Americana, I de Moran, ratio de Geary, test de transformaci�on.

An important theme in spatial analysis and statis-
tics is to determine whether or not values across

units within a study region are strongly correlated
because the significant presence of spatial autocor-
relation (SA) in the data violates the basic assump-
tion of independence in classical statistics. In
practice, Moran’s I (MC) and the Geary ratio (GR)
are regarded as standard measures to reflect the
magnitude of SA of a study region (Cliff and Ord
1981). To evaluate the magnitude of SA, statistical
estimates (“estimates” thereafter) derived from sam-
ples within neighborhoods are compared. When
these statistics are applied, users often implicitly

assume that estimates are accurate without error,
whereas in reality all sample estimates have standard
errors reflecting their degrees of uncertainty. In
addition, when testing the significance of SA statis-
tics, the difference between the observed and
expected measures is standardized by the variances
of the respective statistics. The analytical derivations
of these variances implicitly assume that the esti-
mates have unit variances or uniform variance across
units (Cliff and Ord 1973).

It is the norm rather than the exception that
the standard errors of estimates are not spatially
uniform or random (e.g., Spielman and Folch
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2015) but are not always provided with the data.
However, standard errors should be included in
the data because they reflect the reliability of the
estimates. Increasing numbers of data sets gath-
ered by government agencies (e.g., the American
Community Survey [ACS] data disseminated by
the U.S. Census Bureau) and private organizations
(e.g., the State of Obesity data sets disseminated
by the Trust of America’s Health & R. W.
Johnson Foundation) include standard errors of
the estimates. Thus, using existing measures to
evaluate the level of SA of these spatial data sets
fails to use the actual reliability information pro-
vided by the data, and the results from these
existing measures are likely biased.

The objective of this study is to explore and
demonstrate that when using existing measures to
assess the SA of statistical estimates, results are
insensitive to the error levels of the estimates as
reflected by their standard errors. The insensitivity
of results might also imply that the SA indicated by
these measures is biased. Using simulated and
empirical data, the relationship is explored between
the magnitude of estimate error and the direction
and magnitude of bias. Existing measures are not
sufficient to reflect the SA of statistical estimates
with uncertainty information. Therefore, a new
measure is proposed to evaluate the SA of statistical
estimates by considering the standard error associ-
ated with each estimate. This measure is based on
the Bhattacharyya coefficient (BC), which measures
the overlap between two distributions. It is demon-
strated that the spatial Bhattacharyya coefficient
(SBC) is a more statistically sufficient measure than
existing SA measures because it considers the errors
of statistical estimates in evaluating SA.

Uncertainty and SA Measurement

Positional and attribute uncertainties, the two
main sources among various types of uncertainty
in spatial data (American National Standards
Institute 1998), can influence SA measures because
SA compares attributes over space. The impacts
of positional uncertainty on SA have been
explored in several empirical studies. Burra et al.
(2002) examined the positional uncertainty of geo-
coded points and its impact on the results of glo-
bal and local SA measures (i.e., MC, local Moran,
Gi, and Gi

�). They reported that even a low level
of positional inaccuracy affects local SA measures
but that global measures are robust. A spatial
weights matrix captures the spatial relationship
among locations for the calculation of SA meas-
ures. When created from geocoded points with
positional errors (Jacquez and Rommel 2009),
errors originated from positional inaccuracy could
propagate to SA measures. More recently,

Griffith, Chun, and Lee (2016) investigated the
impacts of positional uncertainty on local SA
measures, including local Moran and Gi

�, using
heavy metal soil sample points. They found con-
siderable changes of SA levels caused by positional
uncertainty; specifically, changes in local Moran
values were larger than those in Gi

�. Unlike pos-
itional uncertainty, the impact of attribute uncer-
tainty on SA measures has not been extensively
investigated, although its effects on the result of
general spatial analysis are widely recognized (e.g.,
Haining and Arbia 1993; Griffith et al. 2007;
Lee, Chun, and Griffith 2018).

Among various approaches to address attribute
uncertainty in spatial analysis and statistics
(Longley et al. 2011), a popular approach is to use a
probability distribution function to represent attribute
error as a form of an uncertain object (Heuvelink,
Brown, and van Loon 2007). For example, Heuvelink
(1998) developed various types of probability models
for attribute error to reflect different measurement
scales and space–time variability of an attribute and
implemented these models. In data mining, this
uncertain object approach is widely used for cluster
analysis, such as in the implementations of UK-means
(Chau et al. 2006) and fuzzy DBSCAN (Kriegel and
Pfeifle 2005) methods. Specifically, these cluster ana-
lysis methods use a probability density function to
calculate distance between each pair of uncertain
objects instead of a general Euclidean distance
(Kriegel and Pfeifle 2005). The research reported
here also adopts the concept of uncertain objects but
in the attribute space (based on a probability density
function) and develops an alternative SA measure by
comparing probability density functions rather than
only estimates.

Limitations of Traditional SA Measures

for Estimates with Empirical Error

Information

In the formulation of SA statistics, the differences
between estimates are expressed as deviations from
the mean (i.e., MC) and as actual differences (i.e.,
GR). Similarity between estimates is evaluated with
the implicit assumption that estimates are relatively
accurate. The standard errors of these estimates are
not considered when the estimates are compared.
Figure 1 illustrates the amount of overlapping prob-
ability density functions between two neighboring
spatial units. Estimates in Figures 1A and 1B are
relatively similar compared to those in Figures 1C
and 1D. If estimates have relatively small errors
(narrower distributions in Figures 1B and 1D) or if
their errors are ignored, the similarity of these esti-
mates, SA, is higher than those estimates with larger
errors (wider distributions in Figures 1A and 1C).
Thus, the SA statistics of estimates are inflated when
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errors of estimates are not considered. By extension,
estimates with larger errors are less positively auto-
correlated than the same set of estimates with
smaller errors. Conversely, when estimates have
moderately strong negative SA (i.e., very different
estimates), they should become more statistically
similar if they have relatively larger errors (i.e.,
more positive or less negative autocorrelation) than
if they have smaller or no error.

In general, estimates with larger errors vary over
larger ranges or more dissimilar or the autocorrel-
ation levels are diluted regardless if they are posi-
tively or negatively autocorrelated. In other words,
if the errors of estimates are ignored in evaluating
SA, it is similar to treating the estimates as highly
accurate or without error, and the results tend to be
more extreme. Statistical estimates with positive SA
yield SA statistics more positive than they should,
whereas estimates with negative SA result in more
negative SA statistics.

The second issue with using MC and GR is that
in testing the significance of these statistics, the var-
iances are assumed to be unity or constant. With no
empirical information about the reliability of esti-
mates, adopting these assumptions (i.e., uniform
variance with unity) is reasonable. However, the
analytical variances that adopt these assumptions

likely create bias in testing the significance of the
statistics. For example, the significance of MC can
be biased due to the uncertainty of rates associated
with the varying sizes of population at risk, and
modified MC calculations for rates were proposed
to address this uncertainty (Oden 1995; Waldh€or
1996; Assunç~ao and Reis 1999). It has been demon-
strated that the uncertainty introduced by varying
sample sizes is controllable using funnel plots
(Dover and Schopflocher 2011). These treatments
on the impacts of uncertainty on SA measures rely
on known sample sizes, which might not be avail-
able. The research reported here examines the
impacts of uncertainty on traditional SA measures
using empirical (e.g., ACS data) and simulated data
with varying degrees of reliability as reflected by the
standard error values or related measures.

Biases of Traditional SA Measures When

Error Information of Estimates Is Ignored

Using the American Community
Survey Data
The ACS data are used in this demonstration because
each ACS estimate has a margin of error (MOE)

Figure 1 Illustrations of overlapping probability density functions between two neighboring spatial units with different
levels of similarity and uncertainty in estimates.
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indicating the reliability of estimate. The specific
ACS data sets are the 5 year (2009–2014) estimates of
median household income (MedInc) of counties in
Texas and estimates of median income of Hispanic
households (HispInc) of census tracts from Dallas
County, Texas (Figure 2). Table 1 shows the sum-
mary statistics of the two variables. The expected
value of MC is �1= n�1ð Þ, where n is the number of
spatial units. The range of MC is approximately
between �1 and 1. An MC value greater than the
expected value indicates a positive SA, and a value
smaller than the expected value indicates a negative
SA. The expected value of GR ¼ 1, and the range of
GR is between 0 and 2, with a value less than 1 indi-
cating a positive SA and a value greater than 1

indicating a negative SA. Although MC and GR offer
consistent results (Table 1), both variables have a sig-
nificant positive SA. However, MedInc of Texas coun-
ties has a stronger positive SA than HispInc in Dallas.
The reliability of ACS estimates is closely related to
the number of completed questionnaires, a combin-
ation of population size and response rate (U.S.
Census Bureau 2009). Because the number of com-
pleted surveys is larger for larger spatial units, ACS
estimates are more reliable for larger (e.g., counties)
than for smaller units (e.g., census tracts; Spielman
and Folch 2015). Thus, it is not surprising that the
average coefficient of variation (CV) of the county
variable (0.0605) is much smaller than the average
CV of the tract variable (0.2960).

Table 1 Summary statistics of the two American Community Survey variables for Texas counties (median house-
hold income, MedInc) and tracts in Dallas County, Texas (median income of Hispanic households, HispInc)

Data set No. of areal units Average estimates

SA measures

Average CV Min CV Max CV SD CVMC GR

MedInc 254 46,353 0.4130 (<0.001) 0.5853 (<0.001) 0.0605 0.0039 0.6414 0.0577
HispInc 516a 49,355 0.2797 (<0.001) 0.6898 (<0.001) 0.2960 0.0023 5.1461 0.4207

Notes: SA¼Spatial autocorrelation; MC¼Moran’s I; GR¼Geary ratio; CV¼ coefficient of variation.
aExcludes tracts with missing data.

Figure 2 Sample American Community Survey data sets: (A) median household income and CV values of Texas coun-
ties; (B) median income of Hispanic households and CV values in Dallas County, Texas. CV¼ coefficient of variation.
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The SA statistics (Table 1) are the levels of SA
without considering error in the ACS estimates. If
errors of estimates are considered, the true values of
observations should vary according to their error
levels. To demonstrate how the estimates could vary
by incorporating the error information, the original
estimate of each observation is replaced by a new
estimate generated from a normal distribution with
the mean and standard deviation corresponding to
the original estimate and standard error of the
observation, respectively. This normality assumption
is reasonable given that that ACS estimates follow a
normal distribution (U.S. Census Bureau 2009).
This process to introduce error into an estimate is
performed for each ACS estimate 1,000 times to
create 1,000 sets of new estimates with empirical
errors. For each set of estimates, we computed the
MC and GR. The histograms in Figure 3 show the
distributions of the two SA statistics with 1,000 sets
of new estimates.

With the empirical errors introduced, most val-
ues of the two SA statistics for the Texas county
data are more strongly positive than the tract data
for Dallas County, consistent with the results using
estimates without errors. However, by introducing
errors to the estimates, the means of MC and GR

are 0.3560 and 0.6322 for Texas counties (vs. 0.4130
and 0.5853 for MC and GR of the original esti-
mates, respectively) and 0.1364 and 0.8458 for the
tracts (vs. 0.2797 and 0.6898 for MC and GR of the
original estimates, respectively) in Dallas County.
The SA statistics for the estimates without consider-
ing error are biased upward (i.e., more positively
autocorrelated) when compared to estimates with
errors (Figure 2). In other words, if errors are
ignored in estimates, the evaluation of SA is
likely inflated.

Synthetic Data
The foregoing demonstrates that ignoring errors in
estimates likely inflates SA values, resulting in stron-
ger positive SA statistics than considering the errors
in the statistical estimates. Empirical data, however,
have mild to moderate levels of positive SA (Table
1). Although one expects that ignoring errors in the
estimates likely results in less negative autocorrel-
ation if the estimates have negative SA, empirical
data with true negative SA are rare (Griffith 2000).
Therefore, this study simulates data with a negative
SA to test our conceptual arguments. In addition,
this simulation illustrates the impact of error on SA

Figure 3 The distributions of Moran’s I (A) and (C) and Geary ratio (B) and (D) of the 1,000 sets of new estimates of the
two variables generated by incorporating errors into the estimates. The MC and GR values without error information
are shown by the vertical lines. MC ¼ Moran’s I; GR ¼ Geary ratio.
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statistics with various SA and error levels.
Simulation experiments are commonly used to test
the properties of SA statistics (e.g., using different
forms of spatial weights and sample sizes (Anselin
and Florax 1995) and varying densities of weight
matrices (Mizruchi and Neuman 2008; Smith 2009).

The simulated data are generated based on two
different processes, one for estimates and the other
for associated variances. Spatially autocorrelated
estimates are generated using a spatial autoregressive
(SAR) process (Chun et al. 2016) as follows:

Y ¼ 1bo þ I�qWð Þ�1e;

where W is a row-standardized spatial weights
matrix, e is a vector of independent and identically
distributed normal random errors, q is an SA param-
eter, and bo is set to one. Nine different q values are
used (�0.8, �0.6, �0.4, �0.2, 0, 0.2, 0.4, 0.6, 0.8),
corresponding to the autocorrelation levels of the
simulated estimates. Simulated values of each auto-
correlation level are generated and distributed over
three different sizes of regular hexagonal tessella-
tions: 10-by-10, 30-by-30, and 50-by-50 (i.e., 100,
900, and 2,500 observations, in series).

Subsequently, the nine sets of spatially autocorre-
lated values for each tessellation are paired with dif-
ferent levels of error. As CV indicates the relative
amount of error associated with the estimates (i.e.,
CV ¼ standard error=estimate; Sun and Wong 2010;
Spielman and Folch 2015), CV values are randomly
generated from a truncated normal distribution with
a lower truncation point equal to 0 and an upper
truncation point equal to 2. The criteria for an
appropriate CV level have not been formally investi-
gated except in a small number of studies. The
National Research Council suggests that a CV of 10
to 12 percent or less has a reasonable reliability
(Citro and Kalton 2007). ESRI (2014) states that a
CV less than 12 percent indicates high reliability, 12
to 40 percent indicates moderate reliability, and
over 40 percent indicates low reliability. Thus, the
simulations employed six CV levels from 10 percent
to 60 percent with an increment of 10 percent. The
CV values are obtained from six different truncated
normal distributions, whose means are 0.1, 0.2, 0.3,
0.4, 0.5, and 0.6. These means are primarily related
to the preceding CV levels. The same standard devi-
ations (0.1) are used for each distribution to minim-
ize the impact of CV variability when the focus is on
the impact of different CV (error) levels. As a result,
a total of 162 sets of samples are generated with
nine SA levels, six CV levels, and three tessellation
sizes. Note that the appropriateness of CV level
depends on context or application.

Using the same process to incorporate errors to
the estimates in the preceding ACS data, the ori-
ginal estimates of the fifty-four sets of samples (nine
SA and six CV levels) of each tessellation are
replaced with newly generated estimates (i.e.,

randomly drawn values). Each new estimate is drawn
from a normal distribution, with the mean and
standard deviation set to the original estimate and
the standard error derived from its original CV val-
ues. This process is repeated 1,000 times for
each estimate.

The variances of both MC and GR values
decrease with increasing sample size from 100
(Figures 4A and 4B) to 2,500 (Figures 4E and 4F).
When the SA are positive (q> 0), though, the ori-
ginal SA statistics are concentrated on the positive
ends of the SA distributions (i.e., larger MC and
smaller GR values). When the SA levels are negative
(q< 0), the original SA statistics are on the negative
ends of the SA distributions (i.e., smaller MC vales
and larger GR values). In other words, when com-
puting MC and GR without considering errors for
estimates with positive SA, the computed statistics
are more positively autocorrelated than they should
be. Conversely, if the estimates are negatively spa-
tially autocorrelated and errors are ignored, the
computed SA statistics are more negatively autocor-
related than they should be. These results confirm
the argument that ignoring errors in evaluating SA
results is a statistical liability.

The interplay of the error level of the SA esti-
mate with sample size also affects the probability of
detecting a significant SA. To address this interplay,
the percentages of significant SA statistics with a p
value less than 0.01 based on a two-tailed test in the
previous simulation experiment are illustrated in
Figure 5. In this graph, 100 percent means that all
SA statistics from the simulation test are significant,
whereas 0 percent means that all simulated SA sta-
tistics are not significant. With a larger sample size
(i.e., 50-by-50 tessellation), SA is significant with a
low value of q, and the significance is not influenced
by the error levels. With smaller sample sizes (i.e.,
10-by-10, 30-by-30 tessellations), though, the prob-
ability of detecting a significant SA decreases when
the error level is high (e.g., CV ¼ 0.6). This impact
of error level is stronger for negative SA. Therefore,
error in estimates has a strong influence on the
detection of SA and cannot be ignored in assessing
SA, especially when working with small sample sizes
(e.g., less than 100 observations) and data with nega-
tive SA.

In sum, if errors in estimates are ignored in eval-
uating SA using traditional measures, the results are
likely biased toward the extremes (i.e., more positive
autocorrelation for positive SA estimates and more
negative autocorrelation for negative SA estimates),
based on the results of our analyses with the empir-
ical (i.e., ACS data) and synthetic data. In addition,
the likelihood of having a significant SA statistic is
inversely related to the magnitudes of errors of the
estimates. To obtain a more accurate assessment of
SA for estimates with error information using trad-
itional measures such as MC and GR, the process of
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Figure 4 The distributions of Moran’s I and Geary ratio for the 1,000 sets of the random samples generated by incorpo-
rating errors into the estimates. The (red) points connected by line segments represent the SA statistics of the original
simulated estimates (54 of them). The boxplots show the distributions of the SA statistics of estimates generated with
errors. Notes: MC¼Moran’s I; GR¼Geary ratio; CV¼ coefficient of variation; SA¼ spatial autocorrelation. (Color figure
available online.)
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Figure 5 The percentages of significant spatial autocorrelation values of the simulation data set (p < 0.01). Notes:
MC¼Moran’s I; GR¼Geary ratio; CV¼ coefficient of variation.
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incorporating errors into the estimates with ran-
domization is needed. The process of introducing
variability to the estimates with empirical errors,
however, is time and computationally intensive, and
an alternative approach is to derive an SA measure
accounting for the errors of estimates.

Measuring Spatial Autocorrelation by

Accounting for Error Information

An Alternative SA Measure
A major limitation of traditional SA measures is that
when those SA measures compare estimates, they do
not consider the errors of the estimates when com-
paring the estimates. A more accurate comparison
should include the error information, and a candi-
date to measure the difference between estimates
and the errors of estimates is the BC or
Bhattacharyya distance (BD). The BC or BD quanti-
fies the similarity or dissimilarity between two dis-
crete or continuous probability distributions
(Bhalerao and Rajpoot 2003) and is widely used for
image processing and pattern recognition (e.g.,
Kailath 1967; Schmidt and Skidmore 2003; Mas
et al. 2004; Patra et al. 2015). Recently, the BD was
used to derive class breaks in map classification
while considering attribute error (Koo, Chun, and
Griffith 2017; Wei, Tong, and Phillips 2017).
Specifically, BC measures the similarity between the
overlap between two distributions. Assuming i xð Þ
and j xð Þ are two continuous distributions, according
to Kailath (1967), BC is defined as follows:

BC i; jð Þ ¼
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

i xð Þj xð Þ
p

dx: (1)

The BD between two normal distributions is derived
from this formulation (Coleman and Andrews 1979)
as follows:

BD i; jð Þ¼ 1
4
ln

1
4

r2i
r2j

þr2j
r2i

þ2

 ! !
þ1
4

li�ljð Þ2
r2i þr2j

 !
;

(2)

where li and lj are the sample estimates at locations
i and j, respectively, ri and rj are the standard errors
of the estimates at the corresponding locations, and
ln denotes the natural logarithm. The BC has a
negative exponential relationship to BD (Kailath
1967) as follows:

BC i; jð Þ¼�exp BD i; jð Þ� �¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rirj
r2i þr2j

s
e
1
4

li�ljð Þ2
r2
i
þr2

j :

(3)

The value of BC, which indicates the amount of
overlap between two sample distributions, ranges
from 0 to 1, where 0 indicates no overlap and 1

indicates a perfect overlap. Thus, BC is a compre-
hensive index to measure the difference between
two distributions by considering both their means
and deviations.

Using BC, a global SA measure (SBC) is formu-
lated as follows:

SBC¼

Pn
i¼1

Pn
j¼1

wijBC i; jð Þ
Pn
i¼1

Pn
j¼1

wij

¼ nPn
i¼1

Pn
j¼1

wij

�

Pn
i¼1

Pn
j¼1

wijBC i; jð Þ
Pn
i¼1

BC i; ið Þ
;

(4)

where wij is an element of a spatial weights matrix
that has a binary weight (i.e., 0 and 1), n is the total
number of observations, and

Pn
i¼1 BCði; iÞ¼ n. The

expression on the right side of Equation 4 shows a
conceptual similarity to the general SA statistics,
specifically to MC. The SBC ranges from 0 to 1,
with a higher SBC indicating a high degree of simi-
larity between the neighboring distributions. That
is, SBC values are affected by both error and SA lev-
els. A higher error level would yield a higher SBC
value and, in contrast, a lower error level would lead
to a lower SBC value. In addition, positive SA of
estimates would lead to a high SBC value, whereas
negative SA of estimates would lead to a low SBC
value, keeping the error level constant. The signifi-
cance of SBC is conducted through a permutation
test. The SBC formulation is similar to MC and GR
conceptually in that all numerators capture the dif-
ferences between neighboring observations. The
numerators of MC and GR consider only the esti-
mates, however, whereas SBC considers both the
estimates and errors. Thus, comparing the values of
MC and GR with SBC needs to acknowledge the
conceptual difference between the two types of
SA measures.

Using SBC to Evaluate SA of Estimates with
Error Information
The property of SBC is explored with simulated data
consisting of spatial autocorrelated estimates and
error statistics. Data generation is similar to the pro-
cess described earlier as the spatially autocorrelated
estimates are generated through an SAR process with
nine different autocorrelation levels (q ¼ �0.8, �0.6,
�0.4, �0.2, 0.0, 0.2, 0.4, 0.6, and 0.8). Standard
errors are derived from CV values drawn from a
truncated normal distribution with different means
(0.1, 0.2, 0.3, 0.4, 0.5, and 0.6) and a fixed standard
deviation (0.1). The 1,000 sets of spatially autocorre-
lated estimates and associated standard errors are
generated for each pair of q and CV values, with a
total of 54,000 simulation data sets generated for
three different sample sizes: 10-by-10, 30-by-30, and
50-by-50 regular hexagonal tessellations. The MC
and GR values for the simulation data sets show that
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as q increases the SA level of the estimates increases
(Figure 6). The increase tends to be less for negative
and low SA but more for positive and high SA. CV
levels do not affect the MC values, however, because
MC does not consider errors of estimates.

Figure 7 shows the distributions of SBC with dif-
ferent SA (q) and error (CV) levels. Three salient
observations are offered by Figures 6 and 7. First, the
SBC means become larger with increasing SA as
reflected by the traditional measures of GR and MC

Figure 6 The box-whisker plots of estimated Moran’s I and Geary ratio values of the simulation data sets with different levels
of spatial autocorrelatoin (q). Notes: MC¼Moran’s I; GR¼Geary ratio; CV¼ coefficient of variation. (Color figure available online.)
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(Figure 6). The increases are much larger for strong
and positive SA than for negative or weak positive
SA. Such a pattern is also similar for the GR and MC
results (Figure 6). Second, the SBC means are mark-
edly affected by the error level (i.e., CV) given any
SA level (i.e., q). Smaller CV levels generally lead to
lower SBC values, and larger CV values lead to larger
SBC values. In addition, the range of SBC values is
affected by the SA level. For instance, with a strongly
negative SA (i.e., q ¼ –0.8), the mean SBC ranges
from 0.07 to 0.40. When SA is strongly positive at
q¼ 0.8, the mean SBC ranges from 0.15 to 0.56.
Third, the variability of SBC is associated with both
q and CV. A larger q value tends to produce larger
variation in SBC than a smaller q. With both large q
and CV values, the SBC has the largest variability. In
addition, the variability of SBC shows a strong associ-
ation to sample size, a characteristic generally shared

among SA statistics (Figure 6). Specifically, SBC
shows a smaller variance with a larger sample size
(i.e., 50-by-50 tessellation) than that with a smaller
sample size (i.e., 10-by-10 tessellation).

These results are consistent with the proposal
that SBC is a sufficient measure of SA. When esti-
mates have strong negative SA (i.e., negative q) and
are relatively reliable (i.e., low CV values), these
estimates should be statistically different and their
corresponding distributions should have low SA val-
ues (SBC). If these negatively autocorrelated esti-
mates are relatively unreliable (i.e., large CV values),
they are more similar to each other (i.e., larger over-
laps in their distributions) or are more spatially
autocorrelated than those distributions with more
reliable estimates (i.e., smaller overlaps). It follows
that these negatively autocorrelated estimates might
not be statistically different. Thus, large CV values

Figure 7 The box-whisker plots of estimated spatial Bhattacharyya coefficient of the simulation data sets with different levels of
spatial autocorrelation (q). Notes: SBC¼ spatial Bhattacharyya coefficient; CV¼ coefficient of variation. (Color figure available online.)
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or having more unreliable estimates make the distri-
butions more similar and, therefore, produce larger
SBC values. A larger q value for the estimates raises
the similarity between neighboring estimates, but
the errors of the estimates (i.e., uncertainty) are crit-
ical in determining SBC values.

A permutation test examines the statistical power
of SBC in detecting significant SA among neighbor-
ing estimates with their errors. For each simulation
data set (54,000 data sets), the permutation shuffles
the estimates and standard errors separately 1,000
times. The mean probabilities of SBC values from
the permutation test (10-by-10 tessellation in Figure
8A) show that when estimates have a negative SA
(i.e., negative q) and are relatively reliable (i.e., low
CV), their corresponding SBC values are likely to be
significant with p> 0.975. It is difficult to statistically
differentiate unreliable estimates from one other
(e.g., CV ¼ 0.6), however, even with strong negative
SA (q ¼ �0.8). When q is positive (i.e., positive SA)
and the CV is relatively large (i.e., unreliable

estimates), the SBC tends to be significant, indicating
a similarity among neighboring distributions (i.e.,
comparing estimates together with their errors).
Similar to other SA statistics, the level of significance
in SBC is greater when sample size is large (Lin,
Lucas, and Shmueli 2013). For the 50-by-50 tessella-
tion (Figure 8C), SBCs are significant even with a
large CV (i.e., CV ¼ 0.6), although the estimates do
not show SA (i.e., q¼ 0.0). This suggests that the
estimate errors have an overwhelming influence on
determining the presence of positive SA among
distributions.

Application to the ACS Data
The SBCs are computed for the two ACS data sets
(MedInc at the county level and HispInc at the census
tract level) and the MC, GR, and CV of the two
variables are included for comparison purposes
(Table 2). MC and GR consistently show that
MedInc has stronger positive SA than HispInc. SBC

Figure 8 The mean probabilities of spatial Bhattacharyya coefficient of the simulation data sets from the permutation
test (the dotted lines are 95 percent confidence intervals for a two-tailed test). Notes: CV¼ coefficient of variation.
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values, though, indicate that HispInc are more similar
than MedInc, as the SBC for MedInc is 0.405 and
that for HispInc is 0.618. In general, a coarser areal
tessellation tends to have a higher SA as data are
relatively smoother than those found in a finer areal
tessellation where data have more local variation.
Although MC and GR conform to this general
expectation, these statistics do not consider the
errors of the estimates. The mean CV of MedInc is
small (0.0605), whereas that of HispInc is relatively
large (0.2960; Table 2). Given that the tract-level
estimates have high levels of error, estimates can be
statistically similar when errors are taken into con-
sideration. Thus, the SBC for HispInc is relatively
large when compared to the SBC for MedInc, in
which the values are more likely to be statistically
different with small error levels. The permutation
tests also indicate that the two SBC values are statis-
tically significant (Figure 9 and Table 2).

Conclusion

When using popular statistics to evaluate the SA
of estimates, which are often the means of statis-
tical distributions, the norm is that the reliability
levels of the estimates (represented by the corre-
sponding standard error or CV levels) are
ignored. Comparison of these estimates therefore

assumes that the estimate errors are uniform.
Their errors and variability are not considered
and, as a result, the SA assessment is biased
upward. If the estimate errors are considered in
assessing SA level, the process is conceptually the
same as comparing distributions with respect to
the means and standard errors.

The applicability of BC to comparing distribu-
tions is recognized and subsequently the SBC is
proposed as a measure of SA. Using simulated
and ACS data, the utility of SBC in evaluating
the SA of distributions is demonstrated. In gen-
eral, SBC captures a high SA when the distribu-
tions (or estimates) have large errors. When
errors are relatively small, the SA of distributions
depends more on the similarity of estimates (i.e.,
means) than the errors. The significance test of
SBC is conducted with the permutation test.
When an SA assessment is needed for data with
relatively large errors (e.g., mean CV over 40
percent) or errors with considerable variability, it
is proposed that SBC1 be used to capture error
information. Taking a slightly more conservative
position, even if estimates have relatively low
error but are relatively nonuniform, SA assessment
should employ SBC in concert with traditional
SA measures. Moreover, SBC furnishes an add-
itional SA measure highlighting the influence of
errors on existing SA statistics (i.e., MC and GR).

The proposed measure furnishes a new approach
to measuring SA. Instead of comparing estimates
(i.e., means) as in conventional SA statistics (e.g.,
MC, GR, G-statistic, local spatial heteroscedasticity
measure [LOSH; Ord and Getis 2012]), the pro-
posed approach highlights the importance of consid-
ering the distributions underneath the estimates. As
the new approach requires one to consider the error
of estimate as an additional component in SA evalu-
ation, the proposed SA statistic—SBC—is not com-
patible with the more conventional approaches to
assess SA, particularly in determining the direction
of autocorrelation. The traditional dichotomous

Figure 9 The distributions of SBCs from the permutation tests for the two American Community Survey variables,
MedInc and HispInc. The two dotted vertical lines represent the SBC values for corresponding variables. SBC¼ spatial
Bhattacharyya coefficient.

Table 2 SBC values and their probabilities for two
American Community Survey variables, MedInc and HispInc

Data set SA Average CV SBC p Value

MedInc MC: 0.4130 (<0.001)
GR: 0.5853 (<0.001)

0.0605 0.4046 0.001

HispInc MC: 0.2797 (<0.001)
GR: 0.6898 (<0.001)

0.2960 0.6184 0.001

Notes: SBC=spatial Bhattacharyya coefficient; SA=spatial auto-
correlation; CV=coefficient of variation; MC=Moran's I;
GR=Geary ratio.
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concept of positive–negative SA is no longer applic-
able in comparing distributions, although the con-
cept is still relevant in describing estimates.

Future studies should pursue several directions.
First, the significance test for SBC is conducted
based on a permutation test, but permutation might
be limited when the distribution of a variable is
affected by other factors, such as the underlying
population at risk (Waller and Gotway 2004). Thus,
a conditional test has merit to reflect the underlying
distribution of a variable. Second, the impact of
error on the SBC warrants further investigation
with a weighting scheme between the error level
and the similarity of estimates. The SBC appears to
be more affected by the error level than the similar-
ity of estimates. If the SBC approach allows analysts
to interactively adjust the relative weights for error
and the similarity of estimates, then the influence of
errors and the similarity of estimates on SA can be
evaluated separately. However, in the current for-
mulation of SBC, standard errors and estimates can-
not be linearly disentangled (i.e., weights for errors
and estimate similarity cannot be controlled inde-
pendently). Future studies are warranted to derive a
more flexible scheme to control the influences of
these two components in assessing the SA of distri-
butions. The study provides evidence that when esti-
mate error is available, SBC should be employed to
assess SA. Thus, future research could aim to derive
more specific quantitative guidelines to determine
the circumstances when SBC and traditional SA
measures yield significantly different results. �
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